

Reusable Launch Vehicle Technology Program

Status Review

RLV Executive Review NASA Headquarters May 24, 1995

9:00AM	Introduction	Payton
9:10AM	Concept Definition & Optimization	Freeman
9:30AM	Technology Integration & Decision Criteria	Cook
9:45AM	Flight Demonstration Technology Programs X-33 Status / Plans X-34 Status / Plans DC-XA Status / Plans	Austin Kennedy Dumbacher
10:30AM	Core Technology Programs Status/Plans Reusable Cryogenic Tank Composite Structures TPS Avionics/VHM Advanced Propulsion	Dumbacher Camarda Cook Cook Monk
12:00 N	Adjourn	

- Objectives Of <u>Access to Space Study</u> Were To Focus on Improving Reliability, Crew Safety And Reducing Operations Costs Of Future US Space Transportation.
- Results Of Access to Space Study
 - SSTO (Rocket) Vehicle Is A Feasible System That Can Achieve The Access To Space Objectives And Provide Major Life Cycle Cost And Performance Benefits To The Nation.
 - SSTO Design Is Integral With Cultural Changes In Operations And Management Strategies To Enable Significant Improvements Over Current Space Launch Infrastructure In Operations Costs And System Reliability.
 - SSTO Technology Maturation Plan Features Enabling And Operations Oriented Technology Development Coupled With Ground Tests, Flight Experiments And X Vehicle Demonstration.
 - The Go Ahead To Proceed With Operational SSTO Launch System Development Is Keyed To Technology Maturation Results.

Access to Space Advanced Technology Team

Technology Requirements

SSTO Rocket

- Tri-Propellant Main Propulsion
- Alt: Advanced LOX/LH2 Main Engine

SSTO Airbreather / Rocket

- Ram/Scramjet
- Actively Cooled TPS
- SLH₂

"Core"

Common Critical Technologies

- Reusable Cryogenic Tankage
- Vehicle Health Management and Monitoring (VHM)
- Autonomous Flight Control
- Operations Enhancement Technologies
- Long Life, Low Maintenance Thermal Protection System

TSTO Airbreather / Rocket

- LH₂ Turbojet / Ramjet
- Expander Cycle Rocket Engine

RLV Core Technology Program Applicability

Vertical Takeoff/Horizontal Land

Wing Body

- Tri-Propellant Main Propulsion
- Alt: Advanced LOX/LH₂ Main Engine

Vertical Takeoff/Vertical Land

- Rotation Maneuver
- Engine Restart

Common Critical Technologies

- OPERATIONS DRIVEN TECHNOLOGIES
- Reusable Cryogenic Tankage
- Graphite Composite Primary Structure
- Long Life, Low Maintenance Thermal Protection System
- Autonomous Vehicle Maintenance Requirements Identification
- Robust Main Propulsion
- Operations Enhancement Technologies

Vertical Takeoff/Horizontal Land

Lifting Body

• Linear Aerospike Rocket Engine

Core Technology Program

Reusable Cryogenic Tank

Graphite Composite Primary Structures

Advanced Thermal Protection

Advanced Propulsion

Avionics / Operable Systems

Next Generation X Vehicles

DC-XA

- Operations
- Advanced Technology

Advanced Technology Demonstrator: X-33

- Operations
- Vehicle Systems

Small Reusable Launch Vehicle Tech Demonstrator: X-34

- Hypersonics
- Operations

Reusable Launch Vehicle Technology Demonstration Program

Reusable Launch Vehicle Technology Program

Key Partners

RLV Decision Criteria

RLV Contributions for Criteria

X

Phase II Criteria

- In Accordance with 11 Point Agreement Between Administrator and OMB (11/94)
- Criteria Developed Between NASA, OMB, OSTP for Measurement of Programmatic and Technical Progress
 - Required for Entrance Into Phase II (X-33 Development) and Phase III (RLV Development)
- Current Common RLV Requirements (To Be Updated)
 - 100 Mission Life Vehicle
 - Depot Maintenance ≥ 20 Missions
- Notes:
 - Integrated System: Applicable Structure, TPS, Insulation, VHM, etc.
 - In-House: NASA Laboratory Complementary Tasks

Programmatic Phase II Criteria

- Preliminary Business Plans for Next Generation System Development, Production and Operations (Phase II and III) will be Completed
- A Small and Efficient Project Office (20 total personnel) Will be Used with Streamlined Acquisition and Minimal Government Oversight
- Completed Initial Design Review and Two Non-Advocacy Reviews of the X-33
- X-33 Selection Will be Completed

Reusable Cryogenic Tank System

<u>Criteria</u>	Activities
 Al-Li One Integrated Tank System Mfg'd & In Test Backup Coupon & Element Tests Complete Scaled RLV Loads Where Applicable 	MDA DC-XA MDA Ground In-House LADC
 Gr-Composite One Integrated Tank System Mfg'd & In Test Backup Coupon & Element Tests Complete 	MDA DC-XA RI LADC
Tank Material Selection Completed/Documented	X-33
 Scalability to RLV Analysis Documented Technologies Can be demo'd by X-33 Correlations Between Test/Predictions to Validate Tools Current Est. Reqt's (To Be Updated) LH2 Weight Target: ≤ 0.5 lb/ft3 LOx Weight Target: ≤ 0.7 lb/ft3 	X-33

Primary Vehicle Structure

<u>Criteria</u>	Activities
 Composite Intertank One Integrated System Mfg'd & In Test Backup Coupon & Element Tests Complete 	MDA DC-XA MDA Ground (2) In-House RI
 Composite Thrust Structure One Integrated System Mfg'd & In Test Backup Coupon & Element Tests Complete 	RI
 Composite Wing/Aerosurface One Integrated System Mfg'd & In Test Backup Coupon & Element Tests Complete 	MDA/LaRC RI
 Material Selection Completed / Documented Scalability to RLV Analysis Documented Technologies Can be demo'd by X-33 Correlations Between Test/Predictions to Validate Tools Current Est. Reqt's (To Be Updated) Airframe Weight Target: ≤ 4 lb/ft2 (Not Inc. TPS/VHM) 	X-33 X-33

Thermal Protection Systems

<u>Criteria</u>	Activities
 Ceramics One Test Article Mfg'd & In Test Backup Element Tests Complete Inc. Appropriate Attachment Mechanisms 	MDA RI In-House
 Metallics One Test Article Mfg'd & In Test Backup Element Tests Complete Inc. Appropriate Attachment Mechanisms 	MDA/InHouse RI LADC
Material Selection Completed / Documented	X-33
 Scalability to RLV Analysis Documented Technologies Can be demo'd by X-33 Correlations Between Test/Predictions to Validate Tools Current Est. Reqt's (To Be Updated) Order of Magnitude Reduction in Maintenance Reqt's from 	X-33 STS

Propulsion Systems

<u>Criteria</u>	Activities	
 Update / Refocus of Technology Program by Aug, 1995 Propulsion Concept Selection Supporting Component Technology Results Documented 	X-33 et. al. X-33 et. al. Aerojet P&W Rocketdyne Lockheed MDA Rockwell Allied Signal FMI RCI Penn State	Completed
 Scalability to RLV Analysis Documented Current Est. Reqt's (To Be Updated) • 50% Reduction in Inspection Compared to Shuttle 	X-33 et. al.	

Phase II Criteria Summary

- Criteria Will be Updated as X-33 Studies & Technology Demonstrations Progress
- Performance Criteria (e.g., Weight Metrics) Must be Reviewed on System Level
 - Configuration Specific
- Criteria Intended as Program's Measure of Success
- Phase III Criteria Keyed Primarilly Around Government and Business Investment Committments
 - Based on Technical and Operational Demonstrations by X-33 / X-34

X-34 Small Reusable Launch Vehicle

X-34 Primary Objective

- Demonstrate advanced technologies for larger reusable launch systems in two ways:
 - Incorporating advanced technologies into the basic X-34 design
 - Providing capability for technology test bed flights for additional demonstrations

